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The most powerful and comprehensive approach of study in modern biology is to understand the whole process of development
and all events of importance to development which occur in the process. As a consequence, joint modeling of developmental
processes and events has become one of the most demanding tasks in statistical research. Here, we propose a joint modeling
framework for functional mapping of specific quantitative trait loci (QTLs) which controls developmental processes and the timing
of development and their causal correlation over time. The joint model contains two submodels, one for a developmental process,
known as a longitudinal trait, and the other for a developmental event, known as the time to event, which are connected through
a QTL mapping framework. A nonparametric approach is used to model the mean and covariance function of the longitudinal
trait while the traditional Cox proportional hazard (PH) model is used to model the event time. The joint model is applied to
map QTLs that control whole-plant vegetative biomass growth and time to first flower in soybeans. Results show that this model
should be broadly useful for detecting genes controlling physiological and pathological processes and other events of interest in
biomedicine.

1. Introduction

To study biology, a classic approach is dimension reduction
in which a biological phenomenon or process is dissected
into several discrete features over time and space. Most ef-
forts in the past decades have been made to understand
biological details of individual features and then use knowl-
edge from each feature to draw an inference about biology
as a whole. There has been increasing recognition of the
limitation of this approach because it fails to detect a rule that
governs the transition from one feature to next, thus leading
to a significant loss of information behind the development
of a biological trait. More recently, tremendous devel-
opments in statistics and computer science have enabled
scientists to model and compute the dynamic behavior of a
biological phenomenon and construct a comprehensive view

of how a cell, tissue, or organ grows and develops across the
time-space scale.

A statistical dynamic model, called functional mapping,
is one of the products of such developments [1, 2]. The merit
of functional mapping lies in its biological relevance to study
the tempo-spatial pattern of change for the trait and further
predict the physiological or pathological status of trait
phenotype. Functional mapping has proven to be powerful
for elucidating the dynamic genetic architecture of complex
phenotypic traits by identifying when specific genes (known
as quantitative trait loci or QTLs) involved turn on and
turn off and how long they are expressed in a time course.
With the advent of new automatic techniques that collect
dynamic data in a cost-effective way, functional mapping
can be anticipated to play an increasingly important role
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in shedding light on the genetic control mechanisms of
complex traits or diseases.

The statistical foundation of functional mapping is lon-
gitudinal data analysis or functional data analysis. There has
been a considerable body of literature on statistical modeling
of time-varying mean and covariance structure using various
parametric, nonparametric, and semiparametric methods
[3–7]. A joint mean-covariance model was proposed by Pou-
rahmadi [8, 9], which shows some advantages over modeling
the mean and covariance separately. Since the publication
of the pioneering work by Laird and Ware [10], random
effects model have been extensively used for longitudinal
data analysis [11]. All these statistical approaches have been
incorporated into functional mapping [12, 13], aiming to
provide the most parsimonious estimates of QTL effects for a
given data set. A Bayesian algorithm for functional mapping
has been proposed recently by Liu and Wu [14].

The complexity of biology lies in the fact that no bio-
logical trait is isolated, rather every trait is affected by other
traits through genes and environmental factors. For example,
when a plant grows into a particular stage, reproductive
behavior, such as flowering, starts to emerge as one of the
important events in plant development. The time to first
flower is highly associated with the amount of vegetative
growth, depending on the environment where the plant is
grown. Likewise, the time to recurrence of prostate cancer in
humans is related with dynamic changes of prostate specific
antigen level. How to jointly model longitudinal and time-
to-event data within functional mapping has become an
important issue for studying the common genetic basis of
these processes and predicting events based on longitudinal
traits.

Simultaneous modeling of longitudinal traits and time
to events has been an active area in biostatistics during the
past twenty years. A linear random effects model and EM
estimation approach are proposed by Henderson et al. [15]
for joint modeling. Guo and Carlin [16] made a comparative
study between separate models and a joint model, showing
that a joint model is more powerful when there is a strong
correlation between the trait and the event. Wang and Taylor
[17] developed a Bayesian method and MCMC algorithm
for joint modeling of longitudinal and event time data
and applied their algorithm on AIDS data. A review article
by Tsiatis and Davidian [18] nicely summarizes the recent
developments for such joint modeling.

By simply estimating the correlation between longitu-
dinal traits and event time, Lin and Wu [19] developed a
first model that connects these two aspects within func-
tional mapping. However, they developed a likelihood-
based framework where the covariance structure for the
longitudinal trait was modelled by the known AR(1), and
model parameters were estimated using maximum likeli-
hood estimation. Taking advantage of event models, such
as semiparametric Cox proportional hazard model, Weibull
model, accelerated failure time (AFT) model, we here pro-
pose a sophisticated model for joint modeling of longitudinal
trait and time to event to locate the QTLs which control
the event via a dynamic trait. The detection of those QTLs
that are common to these types of traits may help to

prevent or accelerate the outcome by genetic approaches.
Our model is constructed with a Bayesian paradigm and
model parameters are estimated by the MCMC algorithm.
Local polynomials are used to model the mean trajectory and
generalized-linear-model- (GLM-) based approach is used to
model the covariance matrix. The model is validated using a
real example in which whole-plant biomass as a longitudinal
trait measured at a series of discrete time points and the time
to first flower as a time-to-event are jointly modeled through
functional mapping. The statistical properties of the model
applied to estimate QTL temporal effects in this example and
its practical usefulness are investigated by simulation studies.

2. Joint Modeling Framework

2.1. Model for the Longitudinal Trait. Genetic mapping
should be based on a segregating population, such as the
backcross, F2, or recombinant inbred lines (RILS), initiated
with two inbred lines each carrying an alternative allele.
An RIL population is generated by self-crossing the hybrids
of the two inbred lines continuously for 7-8 successive
generations, which leads to two homozygous genotypes for
alternative alleles at each locus. Methods for other designs
can be derived similarly. Suppose a backcross has n progeny
which is genotyped to construct a linkage map, aiming at
locating putative QTLs that trigger significant effects on a
longitudinal trait and its associated event. For each progeny,
the trait is measured repeatedly at T different time points and
a time-to-event is also recorded. At a specific time point t,
the phenotypic value of the trait for progeny i affected by a
putative QTL can be expressed by a linear model as follows:

yi(t) =
2∑

j=1

xi juj(t) + ri(t) + ei(t), (1)

where xi j is an indicator variable for a possible QTL genotype
of progeny i and defined as 1 if a particular QTL genotype
j is indicated and 0 otherwise ( j = 1 for QTL genotype
QQ and 2 for genotype qq), uj(t) is the mean phenotypic
value of QTL genotype j for progeny i at time t, ri(t) is the
subject specific random effect, and ei(t) is the residual error
assumed to follow a normal distribution with mean zero and
covariance matrix Σ.

The central theme of functional mapping is to model
the mean and covariance structures for the longitudinal trait
efficiently. Here, we model the mean vector by polynomial
function and the covariance matrix by an approach that
guarantees the positive definiteness of the estimated covari-
ance matrix. Without loss of generality, assume the response
vector for progeny i, yi = (yi(1), . . . , yi(T)), has mean 0 and
covariance matrix Σ. The response at time t, yi(t), can be
predicted by its predecessors as the follows:

yi(t) =
t−1∑

t′=1

φt,t′ yi(t′) + εi(t), (2)

where φt,t′ is the corresponding regression coefficient, εi(t)
is the prediction error for progeny i with mean = 0,
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and σ2(t) is its variance. Assuming that εi(t)’s are uncor-
related (Pourahmadi [8]), we get cov(εi) = D, a diagonal
matrix with σ2(t) being the tth diagonal element, where
εi = (εi(1), . . . , εi(T))′ is the vector of prediction errors.
Hence, the matrix representation of the above autoregression
becomes

εi = Myi, (3)

where M is a lower triangular matrix with 1’s in diagonal ele-
ments and −φt,t′ in the (t, t′)th position. The above equation
simply gives

cov(εi) = M cov
(

yi
)

MT = MΣMT = D, (4)

which is related to the modified Cholesky decomposition of
Σ [20].

Equation (4) will be considered as the basis for modeling
the covariance structure, since this guarantees the estimated
covariance matrix to be positive definite. Following Pourah-
madi [8, 9], we model the mean vector, unconstrained var-
iance parameters log σ2(t), and dependence parameter φt,t′ ,
using a polynomial function of a particular order, expressed
as

uj(t) = βj0 + βj1t + βj2t
2 + · · · + βjr t

r , (5)

ri(t) = θi0 + θi1t + θi2t
2 + · · · + θimt

m, (6)

log σ2
t = η0 + η1t + η2t

2 + · · · + ηgt
g , (7)

φt,t′ = δ0 + δ1(t − t′) + δ2(t − t′)2 + · · · + δh(t − t′)h,

(t′ = 1, 2, . . . , t − 1).
(8)

The optimal (r,m, g,h) is determined from the informa-
tion criteria (AIC/BIC). We note that different genotypes
are assumed to have the same covariance structure but
different means. Note that the above method of modeling
the covariance structure for a longitudinal response is more
robust than the traditional first-order autoregressive (AR(1))
or compound symmetry (CS) structure since real data might
not show a parametric dependence structure. We refer to the
proposed approach as GLM-based approach to estimate the
covariance matrix.

Denote β j = (βj0,βj1, . . . ,βjr) for QTL genotype j and
θi = (θi0, θi1, . . . , θim) for subject i. Then, the conditional
mean function for progeny i carrying QTL genotype j ( j = 1
or 2) for the given subject specific random effect (θi) can be
expressed as

μi j = X(r)
i βTj + X(m)

i θTi , (9)

where

X(r)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ti1 t2i1 · · · tri1
1 ti2 t2i2 · · · tri2
...

...
...

. . .
...

1 tiτ t2iτ · · · triτ
...

...
...

. . .
...

1 tiT t2iT · · · triT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Assume the vectors of subject specific random effects
θi follow m-variate normal distribution with mean 0 and
covariance matrix σ2Im and they are independent of the
residual errors. Note that under this assumption, yi|θi will

follow MVN(X(r)
i βTj + X(m)

i θTi ,Σ), and the marginal distribu-

tion of yi will be MVN(X(r)
i βTj ,Σ + σ2X(m)

i X(m)T
i ).

2.2. Model for the Event Time. We use si to denote the event
time of progeny i. Since in the current situation, the event
time is recorded for all progeny; no progeny is censored.
Assuming a Cox proportional hazard model for this event,
we get for progeny i,

λi(t) = λ0(t) exp
(
γμi j(t)

)
, (11)

where λ0(t) denotes the baseline hazard at time t, μi j(t)
is the mean longitudinal trait at time t for given θi when
progeny i is of QTL genotype j and the regression coefficient
γ represents the effect of the trait on the event time. The
survival function for progeny i can be expressed in terms of
the hazard function as si(t) = exp [− ∫ t0 λi(u)du].

The longitudinal model described above is linked to the
hazard model by γ. If γ = 0, then the event is independent
of the trait, and hence we should better fit separate models
for the trait and the event. However, when γ is different
from zero, a joint model performs better than the separate
models [17]. For simplicity, the baseline hazard is assumed
to be a step function, λ0(t) = λ0k over a partition of the
observed time scale [0, max(si)] into K (possibly evenly
spaced) intervals, (tλ0 = 0, tλ1, tλ2, . . . , tλK ). The value of K is
usually not too large, possibly smaller than 10.

2.3. Likelihood for the Joint Model. Since the QTL genotype
of a progeny is unknown, we use a mixture model to describe
the likelihood of the progeny in terms of its possible under-
lying QTL genotypes [21]. The joint likelihood of unknown
parameters Θ given the longitudinal trait y = (yi)

n
i=1 and

event time s = (si)
n
i=1 for all n progeny can be expressed as

L
(
Θ | y, s

) =
n∏

i=1

⎛
⎝

2∑

j=1

ωj|i
[
π
(

yi, si | Qi = j, θi
)]
⎞
⎠

=
n∏

i=1

⎛
⎝

2∑

j=1

ωj|i

⎧
⎨
⎩
[
f
(

yi | Qi = j, θi
)]

×
[
λi(si) exp

(
−
∫ si

0
λi(u)du

)]⎫⎬
⎭

⎞
⎠,

(12)

where π(·) denotes the joint density of the longitudinal trait
and event time; f (.) denotes a multivariate normal with QTL
genotype-specific mean μi j modeled as (9) and covariance
matrix Σ; hazard function λi(si) is modeled as (11); and ωj|i
denotes the conditional probability of QTL genotype j given
that the marker information of projeny i and Qi is the QTL
genotype for the i-th subject.

The QTL genotype is inferred from marker genotypes of
the linkage map. Let Mi = (Mi1, . . . ,Mim) be the m-marker



4 International Journal of Plant Genomics

genotypes for progeny i, D∗ the position of the putative QTL
measured by its distance from the very first marker of an
ordered linkage group, and Dk the distances between marker
1 and k. Assume that the QTL is located between marker k
and k+1. Then, the conditional probability of QTL genotype
j given the genotype of these two markers that flank the QTL
is expressed as

ωj|i = Prob
(
Qi = j | D∗,Mik,Mi(k+1),Dk,Dk+1

)
. (13)

Note that, given the QTL locations D∗, Dk, and Dk+1, one
can compute d1, the distance of the QTL from marker k and
d2, the distance of the QTL from marker k + 1 [22]. Using
the Haldane map function, one can compute recombination
fractions between marker k and QTL (r1), between QTL and
marker k + 1 (r2), and between markers k and k + 1 (r) as
follows:

r1 = 1
2

(
1− e−2d1

)
, r2 = 1

2

(
1− e−2d2

)
,

r = 1
2

(
1− e−2d

)
,

(14)

where d = Dk+1 − Dk is the distance between marker k
and k + 1. Wu et al. [22] provide a procedure for deriving
the conditional probabilities of QTL genotypes given marker
interval genotypes for the backcross, F2, and RIL popula-
tions, respectively.

Unknown parameters Θ in likelihood (12) contain QTL
genotype-specific parameters β j , σ

2, the parameters that
model the variance structure and dependence structure η =
(η0,η1, . . . ,ηg) and δ = (δ0, δ1, . . . , δh), as shown in models
(7) and (8), respectively, the effect of the longitudinal trait
on the event γ, QTL position D∗ and the baseline hazards
λ0k.

2.4. Posterior Distribution and Sampling Procedure. We
derive a Bayesian approach for estimating the unknown pa-
rameters. This will first need to specify the prior distributions
for the parameters and, given the data and the priors, derive
the posterior distribution over all the unknown parameters.
For βj , we place a multivariate normal prior with zero
mean and covariance matrix Σβ. An inverse gamma prior
with parameters (α1,α2) is considered for σ2. We consider
a uniform prior on γ and uniform (0,Dm) prior for the
parameter D∗. Independent Gamma (a, b) priors are taken
for λ0k, for k = 1, . . . ,K . Priors for η and δ are taken as
MVN(0,Ση) and MVN(0,Σδ), respectively.

With the above priors and likelihood function, we have
the joint posterior distribution for the parameters. In this
case, it is quite straightforward to get the full conditional pos-
terior distributions. Assume that the priors are independent
for different parameters. Thus, we get the posterior density
of β, σ2, γ, D∗, η, δ, λ0 as

π
(
β, σ2, γ,D∗,η, δ, λ0 | y, s

)∝ π
(

y, s | β, σ2, γ,D∗,η, δ, λ0
)

× π(β)π(σ2)π
(
γ
)
π(D∗)π

(
η
)
π(δ)π(λ0).

(15)

Assuming that priors for different genotypes are inde-
pendent, we can express the above posterior distribution as

π
(
β, σ2, γ,D,η, δ, λ0 | y, s

)

∝ π
(

y, s | β, σ2, γ,D∗,η, δ, λ0
)

×
⎡
⎣

2∏

j=1

π
(
β j

)
⎤
⎦π
(
σ2)π

(
γ
)
π(D∗)π

(
η
)
π(δ)π(λ0).

(16)

The full conditional distributions for the model param-
eters, as derived in the Appendix, are used to estimate the
parameters using the MCMC algorithm. Note that the full
conditional distribution for βj is expressed as a product of a
normal distribution term which comes from the longitudinal
trait and two other terms from the hazard model. To update
βj , therefore, we use a Metropolis-Hastings (MH) algorithm
with a normal proposal density since it is a part of its poste-
rior distribution. We also note that in the full conditionals of
η and δ, normal distribution coming from the longitudinal
part of the data is the main determinant. Hence for η and
δ, we consider normal proposals with the current value of
the parameter as the mean and covariance matrix as Ση and
Σδ , respectively. Selection of a good proposal density for γ
is a bit tricky and we follow the recommendation given by
Wang and Taylor [17]. By evaluating several choices for a
good proposal, we consider a normal distribution with mean
as the current state of the parameter and a suitable standard
deviation in such a way that the proposed density gets well
mixed with the target distribution (acceptance rate between
0.25 to 0.40). Because of conjugacy, we can directly simulate
from the full conditional of λ0k’s.

The parameter D∗ which specifies the location of the
QTL is updated following the idea of Satagopan et al. [23]
by using the MH algorithm. A new value of D∗, which we
denote by D∗new, is generated from Uniform (max(0,D∗ −
ψ), min(D∗ + ψ,Dm)), where ψ is the tuning parameter.

Denote this proposed distribution by q(D∗,D∗new). The
proposed value will be considered as the new value of the
chain with probability

α(D∗,D∗new)

= min

[
1,
π
(
D∗new | y, s,β, γ,η, δ, λ0

)
q(D∗new,D∗)

π
(
D∗ | y, s,β, γ,η, δ, λ0

)
q(D∗,D∗new)

]
.

(17)

We note that π(D∗new | . . .) ∝ π(Q | D∗new,M)π(D∗new) =∏n
i=1π(Qi | D∗new,Mi)π(D∗new) and, similarly, π(D∗ |

. . .) =∏n
i=1π(Qi | D∗,Mi)π(D∗).

Because of the independence among n progeny, Q is
updated by updating for eachQi separately. For each progeny
i, the full conditional density is in the form of a multinomial
with the following cell probabilities:

Π
(
Qi = j | yi, si

) = π
(
Qi = j

)
π
(
yi, si | Qi = j

)
∑2

j′=1 π
(
Qi = j′

)
π
(
yi, si | Qi = j′

) .

(18)

We can sample the QTL genotype directly from this full
conditional density at each cycle. Details of the estimation
procedure can be found in Satagopan et al. [23].
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Figure 1: Whole-plant biomass growth trajectories for 184 soybean
RILs. The time to first flower is indicated by a vertical line on
each biomass growth curve. The black curve is the mean growth
trajectory.

3. Application

3.1. Material and Analysis. The new model was applied to
analyze a real data set for QTL mapping in soybeans. The
mapping population contains 184 RILs derived from two
cultivars, Nannong 1138-2 and Kefeng no. 1. A genetic
linkage map of this population was first established by
Zhang et al. [24] with 452 makers including RFLP, SSR,
EST distributed among the 21 linkage group. This map
was recently updated by adding some new SSR makers and
dumping some unreliable markers. The new map contains
834 molecular makers covering a length of 2,308 cM in 24
linkage groups, with an average genetic distance of 2.85 cM
between adjacent markers. Those markers with missing
information were excluded from the analysis, leading to a
total of 780 markers involved in our analysis.

The plants and their parents were grown in a sample
lattice design with two replicates at Jiangpu Soybean Exper-
iment Station, Nanjing Agricultural University, China. After
20 days of seedling emergence, plant biomass (in gms.) were
measured once every 5–10 days until most plants stopped
height growth. A total of 8 measurements were taken for the
biomass and the time to get the first flower in that growing
season was also recorded for each plant. Figure 1 shows the
raw data, both the trait (biomass) and the event time for 184
plants.

Prior distributions for the model parameters were taken
as follows. For genotype specific fixed effect βj , a multivariate
normal prior was used with zero mean and a diagonal
covariance matrix with all diagonal elements 100. For σ2,
we took IG(3, 1) prior which has mean = 0.5 with small
variance (0.25). A uniform prior U(−3.0,−0.1) was taken
for γ following Wang and Taylor [17]. Observed time scale
for the event time data was partitioned into 5 parts; that
is, we took K = 5 and considered independent gamma
(0.04, 1.0) priors for λ01, . . . , λ05, following Wang and Taylor

[17]. Uniform prior was taken for D∗. For η and δ, we
considered multivariate normal priors with zero means and
diagonal covariance matrices with diagonal elements 30 and
20, respectively. To investigate the effect of prior distributions
on the estimation method, we did a sensitivity analysis.
Considering different sets of priors, we fitted our model
many times and it turned out the estimation is almost
insensitive to the choice of priors. Hence the choice of our
priors (even with huge variances for β, η, and δ) does not
affect much the estimation of the model parameters.

We fitted our joint model as described in Section 2, by
MCMC sampling. We ran chains 120,000 times. To remove
the effect of the starting values, we excluded first 20,000
burn-in iterations. With the remaining 100,000 iterations,
we estimated the posterior distributions and the parameters
were estimated by the posterior mean and also calculated the
sample standard deviations for the posterior densities. For
the MH algorithm, the acceptance rates were 0.31, 0.26, 0.25,
and 0.30 for σ2, γ, η, and δ, respectively.

Since our model is complex, we perform several standard
diagnostic tests to assess the convergence of the Markov
chains. First, we use the method proposed by Brooks and
Gelman [25]. Considering five different chains with different
starting points and discarding the burn-in iterations, we
computed multivariate potential scale reduction factors
(MPSRF) to assess the convergence of the chains. Starting
points for the model parameters were drawn from the
respective priors. The computed values of this statistic get
stabilized near 1 after 60,000 iterations for our model
parameters, which indicates convergence of the chains.

Second, we perform Geweke test which compares the
earlier part of the markov chain to the later part for assessing
convergence. After deleting the burn-in iterations, from the
remaining 100,000 iterations, we take out two subsequences;
the first 50,000 and the last 50,000 iterations. Also consistent
spectral density estimates at zero frequency are calculated to
compute the z-scores. The calculated Pvalues for our model
parameters are above 0.18, which indicates a small absolute
z-scores assessing the convergence of our chains. A detailed
discussion of this method can be found in Geweke [26].

Finally, we perform the Heidelberger and Welch test as
proposed by Heidelberger and Welch [27]. This test has two
parts: a stationary test and a half-width test. Our chains after
deletion of the burn-in iterations, pass the stationary test.
To assess whether the number of iterations is adequate to
estimate the parameters accurately, we calculate relative half-
width (RHW). We consider the default α value (0.05) and
predetermined tolerance value is taken as 0.1. For all our
model parameters, the calculated RHW is in between 0.045
and 0.081. This indicates that we have enough iterations to
estimate the model parameters with 95% confidence under
tolerance of 0.1.

3.2. Results. Figure 1 is the growth trajectories of whole-
plant biomass over time for all RILs, in which the times
to first flower for each RIL are also indicated. There are
great variability found for these two traits among RILs.
In the exploratory data analysis, we computed BIC values
for different orders for the triplet (r,m, g,h), showing that
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Table 1: BIC values for selecting the optimum (r,m, g,h) to model
the mean-covariance structures for whole-plant biomass growth
trajectories and the time to first flower in soybeans.

(r,m, g,h) BIC

(3, 3, 3, 2) 7.18

(3, 2, 3, 2) 4.15

(3, 3, 2, 2) 4.26

(3, 2, 2, 2) 3.91

(2, 2, 2, 2) 2.03

(2, 3, 2, 2) 2.87

(2, 2, 3, 2) 3.01

(2, 3, 3, 2) 4.26

(3, 3, 3, 3) 4.66

(3, 2, 3, 3) 3.17

(3, 3, 2, 3) 3.93

(3, 2, 2, 3) 4.05

(2, 2, 2, 3) 3.34

(2, 3, 2, 3) 5.16

(2, 2, 3, 3) 4.88

(2, 3, 3, 3) 3.16

the BIC value is smallest for the order (2, 2, 2, 2), that
is, second order polynomials can best fit the the mean,
variance, and dependence structures (Table 1). By scanning
for the existence of QTLs over the genetic linkage map, we
obtained the posterior distribution of the model parameters
and estimate marginal posterior distributions of the QTL
locations (D∗) for all 24 linkage groups (Figure 2).

We observed posterior peaks in linkage groups 1, 4, 15,
19, 20, 21, and 23. To draw inference about the existence of a
putative QTL in each of these groups, we computed the Bayes
Factor (BF), defined as

BF = P(Y, S | κ = 0)
P(Y, S | κ = 1)

, (19)

where κ denotes the number of QTLs in that particular
group. Following Jeffrey’s scale, the BFS with value smaller
than 1 gives strong evidence against the null hypothesis and
higher than 10 gives enough evidence for the null hypothesis.
Note that in this case, we are testing the existence of no
QTL (null) versus the existence of one QTL (alternative)
for each linkage group. Here, no QTL in a group means
β1 = β2, for that group. So, in order to compute BF we
run our MCMC twice, first under the null and then under
the alternative. The calculated BF for the above 7 linkage
groups were 0.2781, 11.274, 13.493, 10.610, 0.5913, 11.475,
and 0.7953, respectively, implying the existence of QTL in
groups 1, 20, and 23. Table 2 provides genotype-specific
mean parameters for the QTLs located on linkage groups
1, 20, and 23, along with their 95 percent credible intervals
(C.I.).

Since the nature of our model is complex and our esti-
mation is based on MCMC, we perform posterior predictive
check for the aforementioned 7 linkage groups. We simulate
observations to get the posterior predictive distribution. Let
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Figure 2: Marginal posterior plot for QTL locations over 24 linkage
groups. Marker locations are indicated by ticks on the x-axis.

Θ be the set of all model parameters and Drep = (yrep, srep)
be the replicated data. Then given the data D = (y, s), the
posterior predictive distribution of Drep is given by p(Drep |
D) = ∫

p(Drep | Θ)p(Θ | D)dΘ.
One can simulate from the posterior predictive distribu-

tion using the following two steps. First from the posterior
distributions of the model parameters, simulate m values
(vectors) of Θ. Next for each value of Θ, simulate a value
(vector) Drep from the likelihood. The m values (vectors) of
Drep drawn in this way will essentially come from posterior
predictive distribution p(Drep | D).

We simulate 100 draws (m=100) from the posterior
predictive distribution and then apply proposed joint anal-
ysis and estimate the model parameters using MCMC as
described earlier. We compute BF for each of those 7 linkage
groups by considering the problem of testing the existence of
no QTL (null) versus the existence of one QTL (alternative).
Table 3 shows the average BF (with estimated SE) for each
linkage group and the existence of QTL in groups 1, 20, and
23 is quite evident.

Heritability (broad-sense) for the traits is estimated from
the data, as the proportion of phenotypic variance attribu-
table to genetic variance. The estimated heritability in our
case is 32.6%. Also we compute the percentage of variance
explained by three identified QTLs. It turns out the QTLs
identified in linkage groups 1, 20, and 23 explain 6.8%,
14.3% and 11.4% of the total variance, respectively.

We show the marginal posterior plots with 95% credible
intervals for the parameter γ in Figure 3. Note that for all
three groups, the estimates and the confidence intervals are
in the negative part which indicates a negative relationship
between the trait and the event time. Biologically this is
sensible since the plants with higher body mass will take less
time to have the first flower compared to the plants with
lower body masses.

Figure 4 illustrates genotypic differences in whole-plant
biomass trajectory and the time to first flower for the three
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Table 2: Estimates of the parameters that describe genotype-specific biomass growth trajectories and QTL locations on linkage groups 1,
20, and 23, with 95% credible intervals.

Parameter
Group 1 Group 20 Group 23

estimate C.I. estimate C.I. estimate C.I.

β10 −0.4762 (−0.5081, −0.4442) −1.1524 (−1.1641, −1.1405) 0.4190 (0.3897, 0.4484)

β11 3.3214 (3.3023, 3.3404) 2.6829 (2.6463, 2.7194) 0.5971 (0.5566, 0.6377)

β12 0.1548 (0.1363, 0.1731) 0.2295 (0.2020, 0.2570) 0.5438 (0.5176, 0.5701)

β20 −5.4762 (−5.4788, −5.4734) −3.1004 (−3.0231, −2.9768) −2.3571 (−2.3701, −2.3442)

β21 8.4464 (8.4381, 8.4546) 5.3250 (5.3159, 5.3340) 4.4660 (4.4294, 4.5028)

β22 −0.4702 (−0.5011, −0.4392) −0.0250 (−0.0618, 0.0118) 0.0410 (0.0390, 0.0432)

Marker

Interval Sat-356–B30T GNE097b–A199H LC4-4T–Sat-280

D∗ 30.810 (29.1934, 31.7150) 49.600 (48.7515, 50.0726) 39.472 (38.8143, 40.1863)
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Figure 3: Marginal posterior plot for γ for linkage groups 1 (a), 20 (b), and 23 (c).
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Table 3: Posterior predictive check for 7 linkage groups.

Linkage group BF (from actual data) BF with SE (from posterior predictive distribution)

1 0.2781 0.2659 (0.15)

4 11.274 12.086 (1.76)

15 13.493 12.962 (2.17)

19 10.610 11.138 (1.56)

20 0.5913 0.6281 (0.73)

21 11.475 12.183 (1.18)

23 0.7953 0.7682 (0.89)
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Figure 4: Whole-plant biomass growth trajectories and times to first flower (T1 and T2) for two different genotypes at each of the QTLs
detected on linkage groups 1 (a), 20 (b), and 23 (c). Genotypes QQ inherit two alleles from parent Nannong 1138-2, whereas genotype qq
inherits two alleles from parent Kefeng no. 1.

QTLs detected. At the QTL on linkage group 1, the allele (Q)
inherited from parent Nannong 1138-2 leads to increased
biomass growth and earlier flowering than the allele (q) from
parent Kefeng no. 1. The inverse pattern is observed for the
QTL on linkage group 20. The QTL on linkage group 23

alters its direction of genetic effect. Affected by the first two
QTLs, poor vegetative biomass growth in plants stimulates
early flowering (Figures 4(a) and 4(b)). Yet, the QTL on
linkage group 23 makes the fast-growing genotype to flower
earlier than the slow-growing genotype (Figure 4(c)).
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Table 4: Simulation results for genotypic-mean parameters and QTL locations under different covariance structures, AR(1)-, CS- and GLM-
based approach.

Parameter
AR(1) CS GLM-based approach

Actual value Estimate MCSE Estimate MCSE Estimate MCSE

β10 −1.1524 −1.1872 0.0871 −1.0982 0.1094 −1.1667 0.0361

β11 2.6829 2.5391 0.0502 2.6103 0.0495 2.7001 0.0103

β12 0.2295 0.2288 0.0805 0.2301 0.0302 0.2291 0.0113

β20 −3.1004 −3.1204 0.0307 −3.093 0.1025 −3.1255 0.1011

β21 5.3250 5.3140 0.0291 5.2998 0.1130 5.3433 0.0405

β22 −0.0250 −0.0241 0.1302 −0.0257 0.1035 −0.0244 0.0603

D∗ 43.00 39.32 2.3561 40.61 1.5694 42.48 1.1572

4. Simulation Study

We performed simulation studies to study the statistical
properties of the joint model. We assumed an RIL design
of 200 progeny and simulated 11 evenly spaced markers
on a linkage group of length 100 cM. A QTL is located at
43 cM from the very first marker of the linkage group. To
reflect a practical problem, we used parameter estimates
of the soybean QTL detected in linkage group 20 as true
values to simulate the data, allowing the covariance structure.
Time-dependent phenotypic values were assumed to follow
a multivariate normal distribution and the event times were
taken the same as the soybean data. To make a comparison,
we analyzed the simulated data using our nonparametric
GLM-based covariance structure and the traditional AR(1)
and CS covariance structures.

The prior distributions for the model parameters were
taken in the same way as discussed in Section 3.1. A uniform
prior on (0,100) was considered for D∗. For each situation,
we ran Markov chains 120,000 iterations and initial 20,000
burn-in iterations were discarded. Model parameters were
estimated from the posterior distributions on the basis
of remaining 100,000 iterations. The computed BF was
0.649 giving a strong evidence against the null hypothesis.
Table 4 shows the means of the Bayesian estimates of model
parameters with their respective Monte Carlo standard
errors, (MCSE). It can be seen that the estimates are quite
close to the actual values with a reasonably small standard
errors which justifies the accuracy and precision of our
estimation procedure. However, our GLM-based approach
provides better estimation of parameters than AR(1) and CS-
based approaches.

Figure 5 elucidates the marginal posterior plot for the
QTL location under three different covariance structures.
It is found that both AR(1)- and CS-based models provide
the peaks at wrong locations, whereas GLM-based nonpara-
metric covariance structure locates QTL more accurately in
which case the length of the credible interval is narrower than
those obtained from the former two structures. This provides
numerical evidence that the proposed GLM-based model has
better precision of QTL localization.

We perform further simulation studies to assess the
reliability of BF in our data application. For each of the

linkage groups 1, 20, and 23, we simulate data under the
“null” model. As mentioned earlier, under the “null” model,
β1 = β2. For group 1, we consider the null model β1 =
β2 = (−0.4762, 3, 3214, 0.1548), for group 20 it is β1 =
β2 = (−1.1524, 2.6829, 0.2295), and for group 23, our null
model is given as β1 = β2 = (0.4190, 0.5971, 0.5438). The
computed BFS for these three groups are 34.55, 46.79, and
41.86, respectively, suggesting strong evidence for the null.

5. Discussion

Tools to reveal the secret of life should reflect the dynamic
nature of life. More recently, a series of statistical models
have been developed to map quantitative trait loci (QTLs)
that control the dynamic process of a complex trait [1, 2,
22, 28]. These so-called functional mapping models integrate
mathematical aspects of biological processes into a statistical
framework derived to map complex trait QTLs and have
proved to be useful for detecting and identifying genes and
genetic interactions involved in quantitative genetic variation
for plant height, plant rooting ability, and animal body mass.
Functional mapping is also flexible to incorporate complex
biological phenomena, such as genotype-environment inter-
actions and allometric scaling providing powerful means for
addressing biological questions of fundamental importance.

In this paper, we develop a new version of functional
mapping that can map QTLs for developmental events
affected by organismic growth trajectories in time. This
version is benefited from recent statistical developments for
joint modeling of longitudinal traits and event time [16–
18, 29]. In the presence of strong correlation between a
longitudinal trait and event, a joint model performs better
than submodels separately for a single trait. In the joint
modeling framework for these two types of traits, we applied
a GLM-based approach to model the covariance structure
and local polynomials for the mean curves. Bayesian esti-
mation method using the MCMC algorithm was used since
it is computationally much simpler than a likelihood-based
approach. Simulation results show the effectiveness of GLM-
based covariance model compared to traditional parametric
compound symmetry or autoregressive structure.

Our joint model, embedded within functional mapping,
promotes the study of testing how QTLs pleiotropically
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Figure 5: The Bayesian estimate of QTL location (indicated by dash vertical lines) from simulation studies under different covariance
structures, AR(1) (a), CS (b), and nonparametric (c). The true QTL location is at 43 cM from the very first marker of the linkage group.

affect different biological processes and how one trait is
predicted by other traits through genetic information. The
application of the new model to soybean mapping data
does not only validate its usefulness and utilization, but
also gains new insight into the genetic and developmental
regulation of trait correlations in plants. There is no doubt
that the new model can be modified to study the genetic
associations between HIV dynamics and the time to death
as well as prostate specific antigen change and the time to
recurrence of prostate. However, there is much room for
modifying this model. First, to clearly describe our idea,
we assume one QTL at a time for trait control. Epistatic
interactions between multiple QTLs may play an important
role in trait development as well as in correlations between

longitudinal traits and events. Second, from a dynamic sys-
tems perspective, we need to model dynamic correlations
among multiple longitudinal traits and multiple events.
Third, with the availability of efficient genotyping tech-
niques, our model should accommodate a high-dimension
model selection scheme to identify significant genetic vari-
ants from a flood of marker data.

Appendix

Denote β− j = (βj′ : j′ = 1, 2; j′ /= j), S(t) = exp(− ∫ t0 λ(u)du),
h(t) = (1, t, t2, . . . , tr), and g(t) = (1, t, t2, . . . , tm). Let mj

be the number of progeny that carries QTL genotype j. We
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derive the full conditional distributions for the unknown
parameters as
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Similarly, the full conditional distributions for the other
parameters can be derived as follows:
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